

AFRL-IF-RS-TR-2003-52
Final Technical Report
March 2003

ENGINEERING A DISTRIBUTED INTRUSION
TOLERANT DATABASE SYSTEM

University of Maryland Baltimore County

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K445

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-52 has been reviewed and is approved for publication.

APPROVED:
 JOHN C. FAUST

Project Engineer

 FOR THE DIRECTOR:
WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2003

3. REPORT TYPE AND DATES COVERED
Final May 00 – May 02

4. TITLE AND SUBTITLE
ENGINEERING A DISTRIBUTED INTRUSION TOLERANT DATABASE
SYSTEM

6. AUTHOR(S)
Peng Liu

5. FUNDING NUMBERS
C - F30602-00-2-0575
PE - 62301E/63760E
PR - K445
TA - 15
WU - A1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland Baltimore County
1000 Hilltop Circle
Baltimore Maryland 21250

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-52

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: John C. Faust/IFGB/(315) 330-4544/John.Faust@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The primary accomplishment of this project is a new paradigm for secure database system design, intrusion tolerant
database systems. In particular, an innovative intrusion tolerant database system framework, denoted ITDB, is
developed. While traditional secure database systems rely on preventive controls, ITDB can detect intrusions, isolate
attacks, contain, assess and repair the damage caused by intrusions in a timely manner such that a self-stabilized level
of data integrity and availability can be provided to applications. Built on top of COTS DBMS, ITDB arms commercial
database servers with the ability to deliver sustained valid data access services even in the face of intensive attacks. To
validate ITDB, a prototype ITDB system is designed and implemented. The prototype is a seamless integration of five
major subsystems, namely the Malicious Transaction Detection subsystem, the Attack Recovery subsystem, the Attack
Isolation subsystem, the Damage Containment subsystem, and the Self-Stabilization subsystem. Extensive evaluation
of the prototype based on practical database applications, simulated workload and injected attacks is done. Preliminary
testing measurements suggest that when the accuracy of the intrusion detector is satisfactory, ITDB can effectively
tolerate database intrusions with reasonable performance penalty.

15. NUMBER OF PAGES
28

14. SUBJECT TERMS
Intrusion Tolerance, Intrusion Tolerant Database Systems, Information Assurance,
Survivability 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1. INTRODUCTION... 1

1.1 Background and Prior Work .. 1
1.2 ITDB Framework.. 3
1.3 Attack Prediction .. 5

2. MALICIOUS TRANSACTION DETECTION SUBSYSTEM... 6
2.1 The Goal of ITDB ... 6
2.2 Application aware database intrusion detection .. 7

3. ATTACK RECOVERY SUBSYSTEM... 9
4. ATTACK ISOLATION SUBSYSTEM... 11
5. DAMAGE CONTAINMENT SUBSYSTEM.. 14
6. SELF-STABILIZATION SUBSYSTEM .. 17
7. ITDB PROTOTYPE... 20
8. ITDB VALIDATION FRAMEWORK ... 20
9. ATTACK PREDICTION... 21
10. REFERENCES... 23

List of Figures

Figure 1 - ITDB Architecture ... 4
Figure 2 – ITDB Multilayer Methodology ... 5
Figure 3 – Architecture I .. 7
Figure 4 – ITDB Intrusion Detection Subsystem ... 8
Figure 5 – Organization of the Attack Recovery Subsystem Prototype ... 11
Figure 6 – Architecture II ... 12
Figure 7 – Organization of the Attack Isolation Subsystem Prototype... 14
Figure 8 – Architecture III.. 15
Figure 9 – Organization of the Damage Containment Subsystem Prototype ... 17
Figure 10 – Architecture IV.. 18
Figure 11 – Organization of the Self-Stabilization Subsystem Prototype .. 19
Figure 12 – ITDB Prototype Installation .. 21
Figure 13 – Model of Game Theoretic Attack Prediction .. 22

List of Tables

Table 1 – Vulnerabilities of Existing Database Assurance Mechanisms.. 2

1

1. Introduction
The visions of Internet applications (e.g., e-commerce) and pervasive computing not only push
computations from a computer into everywhere, but also maximize our dependence on
networked computing systems. Quickly increased complexity, openness, inter-connection, and
inter-dependence have made these systems more vulnerable and difficult to protect than ever.
The inability of existing security mechanisms to prevent every attack is well embodied in several
recent large scale Internet attacks such as the DDoS attack in Feb. 2000 [Taylor00]. These
accidents convince the security community that traditional prevention-centric security is not
enough and the need for intrusion tolerant or attack resilient systems is urgent. Intrusion tolerant
systems, with characteristics quite different from traditional secure systems, extend traditional
secure systems to survive or operate through attacks. The focus of intrusion tolerant systems is
the ability to continue delivering essential services in the face of attacks.

The primary goal of this project is to develop ITDB, an Intrusion Tolerant Database System
framework, and prototype ITDB systems.

The ITDB project has two major accomplishments: (1) the ITDB framework and (2) a
(preliminary) game-theoretic attack prediction model. The ITDB framework is the focus of this
project.

1.1 Background and Prior Work
Being a critical component of almost every mission critical information system, database
products are today a multi-billion dollar industry. Database systems motivated 32% of the
hardware server volume in 1995 and 39% of the server volume in 2000. Improving the intrusion
tolerance of database systems has a direct positive impact on the technology that enables a
variety of critical, trusted applications such as e-commerce, air traffic control, credit-card,
telecommunication control, and electricity and water supply systems, that our everyday life
depends on.

However, existing database security mechanisms are very limited in tolerating or surviving
intrusions. In particular, authentication and access control cannot prevent all attacks; integrity
constraints are weak at prohibiting plausible but incorrect data; concurrency control and recovery
mechanisms cannot distinguish legitimate transactions from malicious ones; and automatic
replication facilities and active database triggers can even serve to spread the damage.

As a result, although current commercial “off-the-shelf” (COTS) database management systems
(DBMS) are equipped with pretty good preventive mechanisms such as authentication and access
control, information assurance of existing database applications built on top of these COTS
DBMS is seriously threatened by the lack of (good) survivability, which can cause data to be
damaged (without being detected), wrong decisions to be made based on damaged data, the data
integrity level to be seriously decreased, and the availability of the database to be (indirectly)
jeopardized.

2

The vulnerabilities of existing database assurance mechanisms in tolerating intrusions can be
summarized by Table 1.

Table 1 – Vulnerabilities of Existing Database Assurance Mechanisms
VA1 Access controls can be subverted by the inside attacker, or the outside attacker

who assumes the insider’s identity.
VA2 Integrity constraints are weak at prohibiting plausible but incorrect data.
VA3 Concurrency-control and recovery mechanisms cannot distinguish an attacker’s

transactions from any other legitimate transaction.
VA4 OS and lower level data corruption attacks can corrupt the database. Corrupted

data can lead to wrong (real world) decisions or actions, which can be
dangerous, harmful, misleading, and disaster-prone.

VA5 Malicious transactions can seriously corrupt the data. Corrupted data can lead to
wrong (real world) decisions or actions, which can be dangerous, harmful,
misleading, and disaster-prone.

VA6 Data corruption caused by malicious transactions (and lower level attacks) can
force the database server to halt periodically to assess and repair the damage,
which hurts the availability.

Making a database system intrusion tolerant is, in general, a multi-layer job, since the attacks
could come from any of the following layers: hardware, OS, DBMS, and transactions (or
applications). The multi-layer approach is being developed along two directions: (1) from scratch
or (2) using COTS components.

Along the from-scratch direction, tamper resistant processing environments, and trusted OS or
trusted DBMS loaders have been applied to close the door for hardware attacks and OS bugs;
trusted DBMS have been applied to close the door for DBMS bugs; and signed checksums (and a
small amount of tamper resistant storage to keep the signing key) are used to detect OS level data
corruptions [MVS00]. However, the from-scratch approach is usually not a cost-effective
approach, and it cannot be used to tolerate authorized transaction level intrusions, especially
VA5 and VA6.

Based on COTS components, OS level attacks are addressed by several efforts. In [BGI00],
(signed) checksums are smartly used to detect data corruption. In [MG96], a technique is
proposed to detect storage jamming, malicious modification of data, using a set of special detect
objects which are indistinguishable from normal objects by the jammer. Modification of detect
objects indicates a storage jamming attack. Although these can be used to effectively tolerate OS
level intrusions, they cannot handle authorized but malicious transactions, especially VA5 and
VA6.

In summary, although existing database survivability techniques can achieve pretty good
resilience to OS (and other lower) level attacks, none of them can handle application level or
transaction level attacks, namely malicious transactions, which represent most of the existing
database attacks. The goal of the ITDB framework is to fill this hole. In addition, data corruption

3

directly caused by lower level attacks can spread across the database through the read and write
operations of (innocent) transactions. OS-level survivability techniques cannot handle the
damage spreading, but the ITDB framework can.

The ITDB framework can be compared with three types of database systems: (1) COTS DBMS
such as Oracle, SQL Server, Sybase, and Informix; (2) trusted database systems such as ITB
[MVS00]; (3) COTS DBMS enhanced with OS-level survivability tools such as data jamming
[MG96] and data corruption detection [BGJ00]. In terms of integrity, type (1) systems use
integrity constraints to protect the database from inconsistent data. However, they cannot prevent
the attacker from corrupting data without violating data consistency. Type (2) and Type (3)
systems can effectively detect OS-level data corruption. However, none of the three types of
systems can handle transaction-level data corruption or damage spreading. These kinds of
integrity threats can only be addressed by ITDB. In terms of availability, these three types of
systems may need to halt the database during the repair. However, ITDB systems inherently
support WarmStart repair where the database server never stops. Finally, it should be noticed that
ITDB is built on top of existing database security and survivability techniques. An ITDB system
can be built on top of either a COTS DBMS, or a trusted database system. Therefore, the
confidentiality, authentication, and non-repudiation of an ITDB system rely on the corresponding
information assurance attributes of the underlying system.

1.2 ITDB Framework
The ITDB framework focuses on data integrity and availability. ITDB does not address
confidentiality, authentication, or non-repudiation. Within the ITDB framework, at one point of
time, data availability is defined by the set of data objects that are available (or accessible), and
the data availability level is (roughly) measured by the percentage of the data objects that are
available. Data integrity is defined by the set of data objects that are corrupted, whether these
data objects are available or not, and the data integrity level is (roughly) measured by the
percentage of the data objects that are corrupted. Note that at one point of time two database
servers can have the same data integrity (availability) level, but very different data availability
(integrity) levels.

The goal of ITDB is to use COTS components to build database servers that can maintain not
only a desired level of data integrity, but also a desired level of data availability in the face of
attacks. In this way, database servers can have significantly improved ability to deliver sustained
correct (or valid) data access (or transaction processing) services even in face of intensive
attacks.

An ITDB system, with the architecture shown in Figure 1, can detect malicious transactions,
isolate malicious transactions, contain, assess, and repair the damage caused by malicious
transactions and other lower level attacks in such a way that a self-stabilized level of data
integrity could be provided to applications [LJLI01].

4

Figure 1 - ITDB Architecture

An ITDB system is a concurrent system triggered by a set of specific events. The major events
are: (1) when a user transaction T is submitted by an application, the PEM (Policy Enforcement
Manager) will proxy each SQL statement and transaction processing call of T, and keep useful
information about T and these SQL statements; (2) when an SQL statement is executed, the Trail
Collectors will log the corresponding writes in the Write Log, the corresponding reads will
instead be extracted from the statement text into the Read Log, and the Intrusion Detector will
assess the suspicion level of the corresponding transaction and session using the trails kept in the
Write Log (and possibly some other audit tables); (3) when the Intrusion Detector identifies a
suspicious user, the PEM will notify the Isolation Manager to start isolating the user; (4) when
the Intrusion Detector identifies a malicious transaction, the Damage Assessor will start to locate
the damage caused by the transaction, and the PEM and the Damage Container will start the
multi-phase damage containment process (if needed); (5) when the damage caused by a
malicious or affected transaction is located, the Damage Repairer will compose and submit a
specific cleaning transaction to repair the damage; (6) when the Damage Assessor finds an
unaffected transaction, when the Damage Container identifies an undamaged object, or when a
cleaning transaction commits, some objects will be reported to the PEM to do uncontainment;
(7) when the Intrusion Detector finds that a suspicious user is malicious, the Isolation Manager
will discard the isolated data versions maintained for the user; (8) when the Intrusion Detector
finds that a suspicious user is actually innocent, the isolation manager will merge the work of the
user back into the real database by composing and submitting some specific back-out and/or
update-forwarding transactions (to the PEM); (9) when the Self-Stabilization Manager receives a
report from some other components such as the Damage Assessor, some reconfiguration
commands could be generated and sent to some other ITDB components.

5

From the perspective of defense-in-depth survivability, ITDB’s methodology can be summarized
by Figure 2, where (a) there are multiple layers (or phases) of intrusion tolerance operations and
(b) lower layer operations usually build the foundations for higher layer operations, although in
some cases operations at several layers could be done concurrently. Compared with the
methodology of making the resilience of a system dependent on only one or two mechanisms
such as intrusion detection, ITDB’s methodology is not only comprehensive, but also more
resilient to attacks.

1

2

3

4

5

6

Merging

Isolation

Intrusion Detection

Access Control

Reconfiguration

Damage Containment

Damage Repair

Damage Assessment

Figure 2 – ITDB Multilayer Methodology

The ITDB architecture assures integrity by dynamically maintaining a self-stabilized level of
data integrity (with the cost of some availability loss). The damage caused by a malicious
transaction will be detected and identified through intrusion detection and damage assessment. A
substantial amount of damage will be isolated without causing any harm to the (main) database.
Located damage will be repaired on-the-fly. A cost-based self-tuner is used to stabilize the data
integrity level through agile adaptive reconfiguration. The ITDB architecture assures availability
by WarmStart damage assessment and repair (without halting the database), damage containment
(without denying the access to undamaged parts of the database), and attack isolation (without
rejecting suspicious transactions). The availability loss caused by flooding attacks to databases is
not addressed by ITDB.

1.3 Attack Prediction
The ability to predict (the actions of) attacks can significantly enhance people’s ability to build
intrusion tolerance systems due to a couple of reasons. First, one very desired feature of an
intrusion tolerant system is that it can deliver quantitative information assurance guarantees, that
is, its resilience can be measured. One of the key reasons that existing intrusion tolerant systems
do not have this feature and existing security evaluation techniques cannot measure information
assurance is that the resilience of an intrusion tolerant system is heavily dependent on the
attacks; however, attacks are intentionally setup and very difficult to predict. Hence the ability to
model and predict attacks is a critical step towards measurable information assurance. Second,
the ability to predict attacks has the potential to transform existing passive (or reactive) secure
systems, where the defender lags behind the attacker, into active ones.

Attack prediction can be broken down into two categories: trend prediction and action prediction.
In this project, a (preliminary) game theoretic approach is developed for attack prediction, which

6

is the first approach for action prediction (based on the relevant literature review). This approach
models the computer system and the attacker(s) as two self-interested players playing a multi-
stage game where the system wants to maximize its security through its defense operations while
the attacker wants to maximize the security loss through his or her attacks. The Nash equilibria
of the game, which specify the expected-utility maximizing best-response of one player to every
other player, indicate valuable action predictions. In addition to predicting attacks, the
predictions generated by our approach can also give a good estimation of the maximum possible
security loss and tell how the defense should be built. It is believed that this approach can be
used to predict almost every known type of attacks. In particular, a general game-theoretic attack
prediction model for attacks on IDS-protected systems is presented, and a specific prediction
model for credit card fraud is presented, and the preliminary simulation results are very
encouraging. In Section 9, more details about this accomplishment will be presented.

2. Malicious Transaction Detection Subsystem
From Section 2 to Section 6, the key components of the ITDB framework will be presented. For
clarity, the ITDB framework is broken down into four evolving schemes where every later-on
scheme is built on top of the previous schemes.

2.1 The Goal of ITDB
Since the property of database atomicity indicates that only committed transactions can really
change the database, it is theoretically true that if every malicious transaction can be detected
before it commits, then the transaction can be rolled back before it causes any damage. However,
this “perfect” solution is not practical for two reasons. First, transaction execution is, in general,
much quicker than detection, and slowing down transaction execution can cause very serious
denial-of-service. For example, the Microsoft SQL Server can execute over 1000 (TPC-C)
transactions within one second (see www.oracle.com), while the average anomaly detection
latency is typically in the scale of minutes or seconds. Detection is much slower since: (1) in
many cases detection needs human intervention; and (2) to reduce false alarms, in many cases a
sequence of actions should be analyzed.

Second, some authorized but malicious transactions are very difficult to detect. They look and
behave just like other legitimate transactions. Anomaly detection based on the semantics of
transactions (and the application) may be the only effective way to identify such attacks;
however, it is very difficult, if not impossible, for an anomaly detector to have 100% detection
rate with reasonable false alarm rate and detection latency.

Hence, a practical goal should be: “after the database is damaged, locate the damaged part and
repair it as soon as possible, so that the database can continue being useful in face of attacks.” In
other words, the database system is designed to operate through attacks.

7

Figure 3 – Architecture I

Architecture I, which is shown in Figure 3, combines intrusion detection and attack recovery to
achieve this goal. In particular, the Intrusion Detector monitors and analyzes the trails of
database sessions and transactions in a real-time manner to identify malicious transactions as
soon as possible. Alarms of malicious transactions, when raised, will be instantly sent to the
Repair Manager, which will locate the damage caused by the attack and repair the damage.
During the whole intrusion detection and attack recovery process, the database continues
executing new transactions.

2.2 Application aware database intrusion detection
Although there are a lot of anomaly detection algorithms (for host or network based intrusion
detection) [Lunt93, MHL94], they usually cannot be directly applied in malicious transaction
detection, which faces the following unique challenges:

• Application semantics must be captured and used. For example, for a school salary

management application, a $3000 raise is normal, but a $10000 raise is very abnormal.
Application semantics based intrusion detection is application aware. Since different
applications can have very different semantics, general application-aware database
intrusion detection systems must support dynamic integration of application semantics.
Since different anomaly detection algorithms may be good for different application
semantics, a general application-aware database intrusion detection system must adapt
itself to application semantics.

• Multi-layer intrusion detection is usually necessary for detection accuracy. First, proofs

from application layer, session layer, transaction layer, process layer, and system call
layer should be synthesized to do intrusion detection. Lower level proofs can help identify
higher level anomalies. Second, OS-level and transaction-level intrusion detection should
be coupled with each other.

8

Within the ITDB project, a cartridge like detector is designed to address these challenges. The
detector is a cartridge which is general enough to plug in a variety of (a) anomaly detection
algorithms called bullets, (b) application semantics extraction algorithms, and (c) application
semantics based adaptation policies. The user is able to prepare some of these algorithms and
policies. The detector provides the interfaces for the user to pick existing and provide new
bullets, and the detector is not required to rebuild itself again and again to support each new
bullet. In this way, the detector can be used to meet the intrusion detection needs of multiple
applications. Flexibility and expressiveness are the major merits of this detector.

A simple cartridge like detector is implemented within the ITDB project where bullets are
supported through DLL (Dynamic Linkable Libraries) modules and a rule-based mechanism is
used to build the cartridge. The architecture of the detector is shown in Figure 4. In general, rules
are used for two purposes: (1) application semantics are programmed as rules, and (2) bullets are
plugged in as one or more rules. The rules are stored in the Rule Base. An interface (though not
shown in the figure) is provided for the security officer to dynamically register rules and manage
the Rule Base. A rule is fired and processed by the Rule Processor when a specific event is
generated by the Event Generator. The Event Generator generates events based on the trails
collected by the Mediator and some other Trail Collectors such as the set of ITDB triggers. All
the activities are coordinated by the Intrusion Monitor, which is responsible for raising the
suspicion levels. At this stage, ITDB has implemented two bullets: one is a rule-based anomaly
detection algorithm; the other is a data mining based anomaly detection algorithm. Readers can
refer to [LIM01] for more details about the intrusion detection subsystem.

Figure 4 – ITDB Intrusion Detection Subsystem

Intrusion Monitor Rule Processor

Rule Base

Event Generator Logs

 Database
Mediator

Applications

9

3. Attack Recovery Subsystem
Malicious transactions can seriously corrupt a database through a vulnerability denoted damage
spreading. In a database, the results of one transaction can affect the execution of some other
transactions. When a transaction Ti reads a data object x updated by another transaction Tj, Ti is
directly affected by Tj. If a third transaction Tk is affected by Ti, but not directly affected by Tj,
Tk is indirectly affected by Tj. It is easy to see that when a (relatively old) transaction Bi that
updates x is identified malicious, the damage on x can spread to every object updated by a good
transaction that is affected by Bi, directly or indirectly. In a word, the read-from dependency
among transactions forms the traces along which damage spreads.

The job of attack recovery is two-fold: damage assessment and repair. In particular, the job of the
Damage Assessor is to locate each affected good transaction, i.e., the damage spreading traces;
and the job of the Damage Repairer is to recover the database from the damage caused on the
objects updated along the traces. In particular, when an affected transaction T is located, the
Damage Repairer builds a specific cleaning transaction to clean each object updated by T (and
not cleaned yet). Cleaning an object is simply done by restoring the value of the object to its
latest undamaged version.

Temporarily stopping the database will certainly make the attack recovery job simpler since the
damage will no longer spread and the repair can be done backwardly after the assessment is
done, that is, the database can be repaired by simply undoing the malicious as well as affected
transactions in the reverse order of their commit order. However, since many critical database
servers need to be 24*7 available and temporarily making the database shut down can be the real
goal of the attacker, on-the-fly attack recovery which never stops the database is necessary in
many cases.

On-the-fly attack recovery faces several unique challenges. First, ITDB needs to do repair
forwardly since the assessment process may never stop. Second, cleaned data objects could be
re-damaged during attack recovery. Finally, the attack recovery process may never terminate.
Since as the damaged objects are identified and cleaned new transactions can spread damage if
they read a damaged but still unidentified object, so ITDB faces two critical questions: (1) Will
the attack recovery process terminate? (2) If the attack recovery process terminates, can ITDB
detect the termination?

To tackle challenge 1, ITDB must ensure that a later on cleaning transaction will not accidentally
damage an object cleaned by a previous cleaning transaction. To tackle challenge 2, ITDB must
not mistake a cleaned object as damaged, and ITDB must not mistake a re-damaged object as
already cleaned. To tackle challenge 3, the PI’s previous study in [AJL02] shows that when the
damage spreading speed is quicker than the repair speed, the repair may never terminate.
Otherwise, the repair process will terminate, and under the following three conditions ITDB can
ensure that the repair terminates: (1) every malicious transaction is cleaned; (2) every identified
damaged object is cleaned; and (3) further (assessment) scans will not identify any new damage
(if no new attack comes).

From a state-transition angle, the job of attack recovery is to get a state of the database, which is
determined by the values of the data objects, where (a) no effects of the malicious transactions

10

are there and (b) the work of good transactions should be kept as much as possible. In particular,
transactions transform the database from one state to another. Good transactions transform a
good database state to another good state, but malicious transactions can transform a good state
to a damaged one. Moreover, both malicious and affected (good) transactions can make an
already damaged state even worse. A database state S1 is said better than another one S2 if S1 has
less number of objects corrupted. The goal of on-the-fly attack recovery is to get the state better
and better, although during the repair process new attacks and damage spreading could
(temporarily) make the state even worse.

Architecture I has the following properties: (1) it builds itself on top of a COTS DBMS. It does
not require the DBMS kernel be changed. It has almost no impact on the performance of the
database server except that the Mediator can cause some service delay and the cleaning
transactions can make the server busier. (2) The intrusion tolerance processes are all on-the-fly.
(3) During attack recovery, the data integrity level can vary from time to time. When the attacks
are intense, damage spreading can be very serious, and the integrity level can be dramatically
lowered. In this situation, asking the Mediator to slow down the execution of new transactions
can help stabilize the data integrity level, although this can cause some availability loss. This
indicates that integrity and availability can be two conflicting goals in intrusion tolerance. (4)
More availability loss can be caused when (a) the Intrusion Detector raises false alarms; or (b) a
corrupted object is located (It will not be accessible until it is cleaned. Making damaged parts of
the database available to new transactions can seriously spread the damage). (5) Inaccuracy of
the Intrusion Detector can cause some damage not located or repaired. (6) Architecture I is not
designed to and cannot handle physical world attack recovery, which usually requires many
additional activities. Logically repairing a database does not always indicate that the
corresponding physical world damage can be recovered.

To justify the cost-effectiveness of Architecture I, a prototype of Architecture I is implemented
on top of an Oracle database server (within the ITDB project). The prototype subsystem is shown
in Figure 5. In general, the Triggers and the Mediator log the raw trails of transactions. The
Write Log Generator uses the raw trails to produce the Write Log where the write operations of
transactions are kept. The Read Log Generator extracts read operations from the raw trails using
the read set templates extracted from transaction profiles. When a malicious transaction is
identified by the Intrusion Detector, the Repair Manager will do both damage assessment and
repair. The corresponding cleaning (or undo) transactions will be submitted to the Mediator for
execution.

The cost-effectiveness of the attack recovery subsystem prototype is evaluated using simulated
workload and injected attacks. The preliminary testing measurements suggest that when the
accuracy of the Intrusion Detector is satisfactory, the prototype can effectively locate and repair
the damage on-the-fly with reasonable (database) performance penalty. Readers can refer to
[LL01] for more details about this subsystem.

11

Figure 5 – Organization of the Attack Recovery Subsystem Prototype

Finally, it should be noticed that the Attack Recovery Subsystem can easily handle the damage
spread out from the data objects corrupted by OS (and lower) level database attacks.

4. Attack Isolation Subsystem
One problem of Architecture I is that during the detection latency of a malicious transaction B,
i.e., the duration from the time B commits to the time B is detected, damage can seriously spread.
The reason is that during the detection latency many innocent transactions could be executed and
affected. For example, if the detection latency is 2 seconds, then the Microsoft SQL Server can
execute over 2000 transactions during the latency on a single system, and they can access the
objects damaged by B freely (since ITDB does not know which objects are damaged by B during
the latency).

Quicker intrusion detection can mitigate this problem; however, reducing detection latency
without sacrificing the false alarm rate or the detection rate is very difficult, if not impossible.
When the detection rate is decreased, more damage is left unrepaired. When the false alarm rate
is increased, more denial-of-service will be caused. These two outcomes conflict with the goal of
Architecture I.

12

databases

�
�
�
�

Malicious and Legitimate Transactions

Mediator

database
Repair
Manager

Isolation
Manager

trails

DBMS

suspicious
transactions

read only

discard

"innocent" or "malicious"

history logs

Intrusion Detector

transactions

merging

isolating
virtual

Figure 6 – Architecture II

Architecture II, as shown in Figure 6, integrates a novel isolation technique to tackle this
problem. In particular, first, the Intrusion Detector will raise two levels of alarms: when the
(synthesized) anomaly of a transaction (or session) is above Level 1 anomaly threshold THm, the
transaction is reported malicious; when the anomaly is above Level 2 anomaly threshold THs
(but below THm), the transaction is reported suspicious. (The values of THm and THs are
determined primarily based on the statistics of previous attacks). Suspicious transactions should
have a significant probability to be an attack. Second, when a malicious transaction is reported,
the system works in the same way as Architecture I. When a suspicious transaction Ts is
reported, the Mediator, with the help of the Isolation Manager, will redirect Ts (and the
following transactions submitted by the user that submits Ts) to a virtually separated database
environment where the user will be isolated. Later on, if the user is proven malicious, the
Isolation Manager will discard the effects of the user; if the user is shown innocent, the Isolation
Manager will merge the effects of the user back into the main database. In this way, damage
spreading can be dramatically reduced without sacrificing the detection rate or losing the
availability of good transactions.

ITDB does isolation user-by-user because the transactions submitted by the same user (during
the same session) should be able to see the effects of each other. And the framework should be
able to isolate multiple users at the same time. Isolating a group of users within the same virtual
database can help tackle collusive attacks; however, a lot of availability can be lost when only
some but not all members of the group are malicious. Using a completely replicated database to
isolate a user has two drawbacks: (1) it is too expensive; (2) new updates of unisolated users are
not visible to isolated users. In Architecture II, ITDB uses data versions to virtually build
isolating databases. In particular, a data object x always has a unique trustworthy version,
denoted x[main]. And only if x is updated by an isolated user can x have an extra suspicious
version. In this way, the total number of suspicious versions will be much less than the number
of main versions.

The isolation algorithm has two key parts: (1) how to perform the read and write operations of
isolated users (Note that unisolated users can access only the main database); and (2) how to do

13

merging after an isolated user is proven innocent. For part 1, ITDB enforces one-way isolation
where isolated users can read main versions if they do not have the corresponding suspicious
versions, and all writes of isolated users must be performed on suspicious versions. In this way,
the data freshness to isolated users is maximized without harming the main database.

The key challenge in part 2 is the inconsistency between main versions and suspicious versions.
If a trustworthy user and an isolated user update the same object x independently, x[main] and
the suspicious version will become inconsistent, and one update has to be backed out in order to
do consistent merging. In addition, our (previous) study in [LJM99] shows that (1) even if they
do not update the same object, inconsistency could still be caused; and (2) the merging of the
effects of one isolated user could make another still being isolated history invalid. These
inconsistencies must be resolved during a merging (e.g., [LJM99] proposes a precedence-graph
based approach that can identify and resolve all the inconsistencies).

Architecture II has the following properties: (1) Isolation is, to a large extent, transparent to
suspicious users. (2) The extra storage cost for isolation is extremely low. (3) The data
consistency is kept before isolation and after merging. (4) During a merging, if there are some
inconsistencies, some isolated or unisolated transactions have to be backed out to resolve these
inconsistencies. This is the main cost of Architecture II. Fortunately, the simulation study done
in [D84] shows that the back-out cost is only about 5%. After the inconsistencies are resolved,
the merging can be easily done by forwarding the remaining updates of the isolated user to the
main database. (5) Architecture II has almost no impact on the performance of the database
server except that during each merging process (a) the isolated user cannot execute new
transactions; and (b) the main database tables involved in the update forwarding process will be
temporarily locked.

An isolation subsystem prototype, which is shown in Figure 7, is implemented to further justify
the cost-effectiveness of Architecture II. In general, the Intrusion Detector informs which users
are suspicious and should be isolated. The Mediator, which has three components, proxies every
user transaction and SQL statement (or command). The triggers, the SQL Statement Logger, and
the Read Extractor are responsible for keeping track of the read and write operations of
transactions, which are necessary to build the precedence graph when a merging should be done.
The SQL Statement Rewriter and Redirector (SRR) is responsible for enforcing Part I of the
isolation algorithm. The Merger is responsible for enforcing Part II of the isolation algorithm,
namely (a) inconsistency identification and resolution and (b) the Merging Algorithm. The On-
the-fly Isolation Controller enables new user transactions to continue executing without
jeopardizing the correctness of merging processes. In order to transparently isolate a transaction
on top of a commercial single-version DBMS such as Oracle, ITDB (a) uses extra tables to
simulate multiple versions and (b) rewrites the SQL statements involved in the suspicious
transactions in such a way that the one-way isolation policy can be achieved. Note that query
rewriting could cause some service delay to isolated users but not to unisolated users. Readers
can refer to [Liu01] for more details about this subsystem.

14

Figure 7 – Organization of the Attack Isolation Subsystem Prototype

5. Damage Containment Subsystem
Another problem of Architecture I is that its damage containment may not be effective.
Architecture I contains the damage by disallowing transactions to read the set of data objects that
are identified (by the Damage Assessor) as corrupted. This one-phase damage containment
approach has a serious drawback; that is, it cannot prevent the damage caused on the objects that
are corrupted but not yet located from spreading. Assessing the damage caused by a malicious
transaction B can take a substantial amount of time, especially when there are a lot of
transactions executed during the detection latency of B. During the assessment latency, the
damage caused during the detection latency can spread to many other objects before being
contained.

Architecture III, as shown in Figure 8, integrates a novel multi-phase damage containment
technique to tackle this problem. In particular, the damage containment process has one
containing phase, which instantly contains the damage that might have been caused (or spread)
by the intrusion as soon as the intrusion is detected; and one or more later-on uncontaining
phases to uncontain the objects that are mistakenly contained during the containing phase, and
the objects that are cleaned.

15

In Architecture III, the Damage Container will enforce the containing phase (as soon as a
malicious transaction is reported) by sending some containing instructions to the Containment
Executor, and the Uncontainer, with the help from the Damage Assessor, will enforce the
uncontaining phases by sending some uncontaining instructions to the Containment Executor.
The Containment Executor controls the access of the user transactions to the database according
to these instructions.

Figure 8 – Architecture III

When a malicious transaction B is detected, the containing phase must ensure that the damage
caused directly or indirectly by B will be contained. In addition, the containing phase must be
quick enough because otherwise either a lot of damage can leak out during this phase, or
substantial availability can be lost. Time stamps can be exploited to achieve the desired goal. The
containing phase can be done by just adding an access control rule to the Containment Executor,
which denies the access to the set of objects updated during the period of time from the time B
commits to the time the containing phase starts. This period of time is called the containing time
window. When the containing phase starts, every active transaction should be aborted because
they could spread damage. New transactions can be executed only after the containing phase
ends.

It is clear that the containing phase over-contains the damage in most cases. Many objects
updated within the containing time window can be undamaged. And ITDB must uncontain them
as soon as possible to reduce the corresponding availability loss. Accurate uncontainment can be
done based on the reports from the Damage Assessor, which could be too slow due to the
assessment latency. ITDB exploits transaction types to do much quicker uncontainment. In
particular, assuming that (a) each transaction Ti belongs to a transaction type type(Ti) and (b) the
profile for type(Ti) is known, the read set template and write set template can be extracted from
type(Ti)’s profile. The templates specify the kind of objects that transactions of type(Ti) could
read or write. As a result, the approximate read-from dependency among a history of transactions
can be quickly captured by identifying the read-from dependency among the types of these
transactions. Moreover, the type-based approach can be made more accurate by materializing the
templates of transactions using their inputs before analyzing the read-from dependency among

16

the types. Readers can refer to [LJ01] for more details about our multi-phase damage
containment technique.

Architecture III has the following properties: (1) it can ensure that after the containing phase no
damage (caused by the malicious transaction) leaks out; (2) as a result, the attack recovery
process needs only to repair the damage caused by the transactions that commit during the
containing time window, and the termination problem addressed in Architecture I does not exist
any longer; and (3) one-phase containment and multi-phase containment are the two extremes of
the spectrum of damage containment methods. In particular, one-phase containment has
maximum damage leakage (so minimum integrity) but maximum availability, while multi-phase
containment has zero damage leakage (so maximum integrity) but minimum availability. In the
middle of the spectrum, there could be a variety of approximate damage containment methods
that allow some damage leakage.

To justify Architecture III, a damage containment subsystem prototype, which is shown in
Figure 9, is implemented. In general, the Intrusion Detector informs DDCS which transactions
are malicious. The Transaction Proxy proxies user transactions for the purpose of keeping track
of the status and the SQL statements of transactions. The triggers and the Read Extractor are
responsible for keeping track of the read and write operations of transactions, which are
necessary for the unconfining operations. Note that the Read Extractor extracts transaction read
information from the SQL statements kept by the Transaction Proxy. The Confinement Executor
is responsible for (1) maintaining the confinement time window as new malicious transactions
are reported by the Intrusion Detector; (2) enforcing the damage confinement control with the
help of the U_SET; and (3) maintaining the time stamp information by rewriting user SQL
queries. Unconfining phases B and C are enforced by the Unconfinement Executor. Unconfining
phases A and D are enforced by the Repair Manager, which also performs damage assessment
and repair.

The key operations of the prototype are triggered by three main events. (1) When a new user
transaction arrives, the Transaction Proxy will proxy the transaction, and the Unconfinement
Executor will enforce the confinement control and maintain the time stamps for the data objects
that are updated by this transaction. (2) When a new malicious transaction B is detected, the
Confinement Executor will set a new confinement time window, the Unconfinement Executor
will adjust the U_SET and its unconfining operations to cover B, and the Repair Manager will
adjust its damage assessment and repair operations to cover B. (3) When the Repair Manager
finishes the repair for the set of detected malicious transactions, the Unconfinement Executor
will discontinue enforcing the confinement control.

17

Figure 9 – Organization of the Damage Containment Subsystem Prototype

Architectures II and III share the same goal, that is, to reduce the extent of damage spreading,
while they take two very different approaches. It should be noticed that these two architectures
are actually complementary to each other and can be easily integrated into one, as illustrated in
Figure 10.

6. Self-Stabilization Subsystem
The intrusion tolerance components introduced in Architectures I, II, and III can behave in many
different ways. At one point of time, the resilience or trustworthiness of an intrusion tolerant
database system is primarily affected by four factors: (a) the current attacks, (b) the current
workload, (c) the current system state, and (d) the current defense behavior of the system. It is
clear that based on the same system state, attack pattern, and workload, two intrusion tolerance
database systems (of the same architecture) with different behaviors can yield very different
levels of resilience. This suggests that one defense behavior is only good for a limited set of
environments, which are determined by factors (a), (b), and (c). To achieve the maximum
amount of resilience, intrusion tolerant systems must adapt their behaviors to the environment.

Architecture IV, as shown in Figure 10, integrates a reconfiguration framework to handle this
challenge. In particular, an Adaptor is deployed to monitor the environment changes and adjust
the behaviors of the intrusion tolerance components in a way such that the adjusted system
behavior is more (cost) effective than the old system behavior in the changed environment.

18

DBMS

Intrusion Detector

Damage
Container

�
�
�

�
�
�

database

virtual
isolating
databases

Malicious and Legitimate Transactions

Mediator

Repair
Manager

Isolation
Manager

Adaptor

Uncontainer

Containment
Executor

workload

state variable feedbackattacks

Figure 10 – Architecture IV

In Architectures I, II, and III, almost every intrusion tolerance component is reconfigurable and
the behavior of each such component is controlled by a set of parameters. For example, the
major control parameters for the Intrusion Detector are THm and THs. The major control
parameter for the Damage Container is the amount of allowed damage leakage, denoted DL.
When DL = 0, multi-phase containment is enforced; when there is no restriction on DL, one-
phase containment is enforced. The major control parameter for the Mediator is the transaction
delay time, denoted DT. When DT = 0, transactions are executed in full speed; when DT is not
zero, transaction executions are slowed down. At time t, ITDB calls the set of control parameters
(and the associated values) for an intrusion tolerance component Ci the configuration (vector) of
Ci at time t, and the set of the configurations for all the intrusion tolerant components the
configuration of the intrusion tolerant system at time t. In Architecture IV, each reconfiguration
is done by adjusting the system from one configuration to another configuration.

The goal of Architecture IV is to improve the resilience of the system, which has three major
aspects: (1) how well the level of data integrity is maintained in face of attacks; (2) how well the
level of data and system availability is maintained in face of attacks; and (3) how well the level
of cost effectiveness is maintained in face of attacks.

To do optimal reconfiguration, ITDB wants to find the best configuration (vector) for each (new)
environment. However, this is very difficult, if not impossible, since the adaptation space of
Architecture IV systems contains an exponential number of configurations. To illustrate, the
simplest configuration of an Architecture IV system could be [THm, THs, DL, DT], then the size
of the adaptation space is domain(THm) × domain(THs) × domain(DL) × domain(DT), which is
actually huge. Moreover, ITDB faces conflicting reconfiguration criteria, that is, trustworthiness
and cost conflict with each other, and integrity and availability conflict with each other.

19

Therefore, ITDB envisions the problem of finding the best system configuration under multiple
conflicting criteria a NP-hard problem.

Architecture IV focuses on near optimal heuristic adaptation algorithms which can have much
less complexity. For example, a data integrity favored heuristic can work as follows: when the
level of data integrity, i.e., LI, is below a specific warning threshold Iw, (a) switch the system to
multi-phase containment, i.e., let DL = 0; (b) slow down the execution of new transactions by
DT = DT + α(Iw - LI); and (c) lower the anomaly levels required for alarm raising, that is, THm =
THm - β(Iw - LI), and THs = THs - γ(Iw - LI). In this way, ITDB rejects and isolates more
transactions. Here the values of α, β, and γ are determined based on previous experiences. Note
that it is very possible that different (value) combinations of (α, β, γ) are optimal for different
environments. Hence it is worthy to have multiple such heuristics with different combinations of
(α, β, γ).

It is clear that under different environments different heuristics are the most effective.
For example, in some cases integrity favored heuristics can be better, but in some other cases
availability favored heuristics can be better. Architecture IV systems should have a mechanism
to guide the system to pick the right heuristic (for the current environment). For example, a rule-
based mechanism can be used for this purpose.

Figure 11 – Organization of the Self-Stabilization Subsystem Prototype

A rule-based self-stabilization subsystem prototype, which is shown in Figure 11, has been
designed and implemented. In general, the adaptation strategies are programmed as rules. The

20

rules are fired by the Self-Stabilization Manager (SSM) and the corresponding reconfiguration
operations are enforced by the Reconfiguration Executor through the Listener. The adaptations
are triggered under three possible situations: (a) when the Emergency Analyzer reports an
emergency to the SSM, (b) when the SSM pulls some situation data from the components, and
(c) when the components push some situation data to the SSM. Readers can refer to [LL02] for
more details about this subsystem.

7. ITDB Prototype
The prototypes for each ITDB subsystem have been integrated into the ITDB prototype. The
ITDB prototype implements every functionality of the ITDB framework, including transaction
proxying (the key function of the PEM), reads extraction, trail collection, intrusion detection,
damage assessment, damage repair, multi-phase damage containment, attack isolation, and self-
stabilization through dynamic reconfiguration. Moreover, two real world database applications
have been implemented to test the functionality of ITDB: one for credit card transaction
management, the other for inventory management (based on TPC-C).

The ITDB prototype has around 30,000 lines of (multi-threaded) C++ code and Oracle PL/SQL
code. Each component of ITDB is implemented as a set of C++ objects that have a couple of
CORBA calling interfaces through which other components can interact with the component and
the reconfiguration can be done. ITDB uses ORBacus V4.0.3 as the ORB. Finally, ITDB
assumes that applications use OCI calls, a standard interface for Oracle, to access the database,
and ITDB proxies transactions at the OCI call level. The reason that ITDB does not proxy
transactions at the TCP/IP or the SQL*NET level, which is more general, is because the exact
packet structure of SQL*NET is confidential.

One possible installation of the ITDB prototype is shown in Figure 12. Enabled by the ORB-
based system design, ITDB can distribute its components across a network in a variety of ways
for load-balancing and improved resilience. In addition to evaluating each subsystem prototype,
the integrated ITDB prototype has been evaluated from the functionality perspective. The results
show that the designed functionalities of ITDB are achieved and the ITDB components
collaborate with each other in a smooth way.

8. ITDB Validation Framework
A validation framework for ITDB is developed under the guideline of the OASIS program. The
validation framework clearly identifies the assumptions made by this project, justifies the
accomplishments of this project, and identifies the limitations of the ITDB framework. Readers
can refer to [LV02] for more details about this validation framework.

21

Damage
Assessor

Damage
Repairer

Damage
Container

Isolation
Manager

Database
Server

Self-Stabilization
Manager

Intrusion
Detector

Firewall

PEM

Collectors
Trail

Network

ORB

Figure 12 – ITDB Prototype Installation

9. Attack Prediction
A drawback of existing secure system designs is that they focus on the system itself and consider
attackers as a part of the environment of the system. As a result, such designs can only passively
observe and react to the environment, especially the attacks, but cannot model, analyze, and
predict the attacker intent, objective, and strategies.

To enable attack prediction, existing secure system designs are extended into a new paradigm,
which is shown in Figure 13, where the attacks are no longer a part of the environment. In
particular, the attacker and the system are modeled as two peer systems, or two players fighting a
sequence of battles or game plays, where (a) each player has a set of strategies to fight. A
strategy can be an action or a sequence of actions. (b) The strategy space of the system is
determined by the set of security facilities (or components) deployed to protect the system (Note
that for clarity these components are not shown in Figure 13). The system can defend against the
attacker in many different manners by having multiple ways to configure its facilities. Each such
manner can be a defense strategy. (c) The strategy space of the attacker is the set of attacks that
the attacker is able to launch. An attack can be an action or a sequence of actions. (d) At one
point of time, the battle is defined by a pair of strategies: one from the attacker, one from the
system. (e) The outcome of each battle indicates “who wins” in this round. In the real world, an
outcome could be “the attacker breaks in”, “a malicious access request is rejected”, etc. Note that
for some battles, there may not be clear winners. (f) A battle-outcome yields two utility
measures: one earned by the attacker, the other earned by the system. These utility measures
indicate how the two players prefer the outcome. The framework uses utility measures to
precisely define the meaning of “winning a game”. (g) The goal of each player is to win the
game, or to maximize his or her utilities. (h) The environment now only contains the good
accesses. (i) Each player maintains a knowledge base to keep the player's knowledge about the
other player and the other player's belief. (j) Each player selects the strategy to play based on his
or her knowledge base. (k) Before each player fights a new battle, the outcomes of previous
battles are already known, and become a part of each player's knowledge base.(l) The attacker's

22

uncertainty about the system's defense, and the system's uncertainty about the attacker's offense,
are all modeled by the rationality notion of an expected-utility maximizer. (m) The system's
uncertainty about “whether or not the incoming access is an attack” is modeled by having
multiple types of players that play with the system.

utilities

Game

Time

defense
strategy

good accesses

strategy
space

engineknowledge
base

engine

strategy
space

knowledge
base

attack
strategy

payoff payoff
utilities

An attacking systemA secure system

Figure 13 – Model of Game Theoretic Attack Prediction

A direct output of the above game theoretic attacker-system model is predictions about attacker
actions (and strategies). In particular, the above attacker-system model is mathematically
formalized as a multi-stage Bayesian game, and it is found that the Nash equilibrium of such
games can produce valuable attack predictions since (1) the game model captures the key
components of real world attacker-system relationships, such as strategies, outcomes, utilities (or
incentives), knowledge and uncertainty; (2) the game model captures such key characteristics of
real world attacker-system relationships as incentive-based strategy selection, strategic
independence, and knowledge-based strategy selection; and (3) the notion of Nash equilibrium
captures such key characteristics of real world attacker-system relationships as relativity in (best)
strategy selection, and the rationality notion of an expected-utility maximizer.

A general game theoretic attack prediction model is developed to predict the attacks on IDS-
protected systems, and a concrete game theoretic attack prediction model is developed to predict
credit card fraud transactions. Within this project, extensive simulations have been done on the
game plays involved in the credit card fraud prediction model, and the results show that (a) there
exists pure strategy Nash equilibrium, (b) the Nash equilibria indicate the best strategies for
rational attackers, and (c) game theoretic attack prediction is typically computation intensive,
and approximation is usually needed for practical game theoretic attack prediction. Readers can
refer to [LLI02] for more details on this accomplishment.

23

10. References

[AJL02] P. Ammann, S. Jajodia, and P. Liu. Recovering from Malicious Transactions.

IEEE Transactions on Knowledge and Data Engineering, 2002, To appear.

[BGI00] D. Barbara, R. Goel, and S. Jajodia. Using Checksums to Detect Data
Corruption. In Proc. 2000 International Conference on Extending Data Base
Technology, Mar 2000.

[D84] S. B. Davidson. Optimism and Consistency in Partitioned Distributed Database
Systems. ACM Transactions on Database Systems, 9(3):456-481, 1994.

[LIM01] P. Liu, S. Ingsriswang, and X. Ma. AAID: An Application Aware Transaction-
Level Database Intrusion Detection System. Technical Report, University of
Maryland at Baltimore County, Dec 2001.

[Liu00] P. Liu. The General Design of ItDBMS. Technical Report, University of
Maryland at Baltimore County, July 2000.

[Liu01] P. Liu. DAIS: A Real-Time Data Attack Isolation System for Commercial
Database Applications. Proc. 2001 Annual Computer Security Applications
Conference, pages 219-229. IEEE Computer Press.

[Liu02] P. Liu. Architectures for Intrusion Tolerant Database Systems. Proc. 2002
Annual Computer Security Applications Conference, To appear.

[LJ01] P. Liu and S. Jajodia. Multi-Phase Damage Confinement in Database Systems
for Intrusion Tolerance. Proc. 14th IEEE Computer Security Foundations
Workshop, June 2001, pages 191-205.

[LJB01] P. Liu and S. Jajodia. Trusted Recovery and Defensive Information Warfare.
Kluwer Academic Publishers, 2001.

[LJAL02] P. Liu, S. Jajodia, P. Ammann, and J. Li. Can-Follow Concurrency Control.
Proc. 2002 IASTED International Conference on Networks, Parallel and
Distributed Processing and Applications, To appear.

[LJLI01] P. Liu, J. Jing, P. Luenam, and S. Ingsriswang. Intrusion Tolerant Database
Systems. Technical Report, University of Maryland at Baltimore County, April
2001.

[LJM99] P. Liu, S. Jajodia, and C. D. McCollum. Intrusion Confinement by Isolation in
Information Systems. Journal of Computer Security, 8(4):243-279, 2000.

24

 [LLWJ02] P. Liu, P. Luenam, Y. Wang, J. Jing, and S. Ingsriswang. ITDB: An Intrusion
Tolerant Database System. Demo Paper. Technical Report, University of
Maryland at Baltimore County, Feb 2002.

[LL01] P. Luenam and P. Liu. ODAR: An On-the-fly Damage Assessment and Repair
System for Commercial Database Applications. Proc. 15th IFIP WG11.3
Working Conference on Data and Application Security, July 2001.

[LL02] P. Luenam and P. Liu. The Design of an Adaptive Intrusion Tolerant Database
System. Proc. 2002 IEEE Workshop on Intrusion Tolerant Database Systems,
June 2002.

[LLI02] P. Liu and L. Li. A Game Theoretic Approach to Attack Prediction. Technical
Report, University of Maryland at Baltimore County, April 2002.

[Lunt93] T. F. Lunt. A Survey of Intrusion Detection Techniques. Computers &
Security, 12(4):405-418, June 1993.

 [LV02] Peng Liu. ITDB Survivability Validation Framework. Technical Report,
Pennsylvania State University, August 2002.

 [LW02] P. Liu and Y. Wang. The Design and Implementation of a Multiphase Damage
Confinement System. Proc. 16th IFIP WG11.3 Working Conference on Data
and Application Security, July 2002.

[LX01] P. Liu and H. Xu. Efficient Damage Assessment and Repair in Resilient

Distributed Database Systems. Proc. 15th IFIP WG11.3 Working Conference
on Data and Application Security, July 2001.

[MG96] J. McDermott and D. Goldschlag. Towards a Model of Storage Jamming. In
Proc. of the IEEE Computer Security Foundations Workshop, pages 176-185,
Ireland, June 1996.

[MHL94] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network Intrusion Detection.
IEEE Network, June 1994, pages 26-41.

[MVS00] U. Maheshwari, R. Vingralek, and W. Shapiro. How to Build a Trusted
Database System on Untrusted Storage. In Proc. of 4th Symposium on
Operating System Design and Implementation, San Diego, CA, Oct 2000.

[Tylor00] C. Taylor. Behind the Hack Attack. Time, (2): 45-47, February 2000.

